Формулы расчета процентов по вкладу

Содержание:

Расчет вклада с капитализацией процентов в Excel

И в заключение я покажу вам еще один простой способ быстро произвести расчет процентов по депозиту с капитализацией. Для этого нам понадобится стандартный табличный редактор Эксель (MS Excel).

Открываем Эксель, становимся на любую ячейку таблицы и вызываем функцию нажатием кнопки fx слева от строки ввода данных. Из списка предложенных функций выбираем БС — будущая стоимость. Если этой функции нет в появившемся списке (там отображается 10 последних использующихся), то найдите ее через поиск.

Нажимаем функцию БС и в открывшейся таблице вводим необходимые вам данные:

  • Ставка — ставка по вкладу в виде десятичной дроби в период капитализации (то есть, если у вас вклад с ежемесячной капитализацией, то делим ставку по вкладу на 12 месяцев и результат вносим в эту ячейку);
  • Кпер — количество периодов капитализации. Например, если у вас вклад на год, и проценты капитализируются ежемесячно, то вводим сюда 12;
  • Плт — ничего не вводим. Это поле используется в том случае, когда ежемесячно происходит выплата фиксированной суммы;
  • Пс — нынешняя (приведенная) сумма вклада, то есть, та сумма, которую вы кладете на депозит.
  • Тип — ничего не вводим.

В результате вы сразу в форме увидите сумму, в которую превратится ваш вклад вместе с процентами за весь период — будущую стоимость вклада. Если вычесть из нее начальную сумму вклада — вы получите непосредственно сумму начисленных сложных процентов.

Например, вот так я рассчитал будущую стоимость вклада для последнего примера, приведенного выше:

Как видите, результат абсолютно тот же, что и по при расчете вклада по формуле сложных процентов (см. выше) — 58037,73 рубля — вклад вместе с процентами или 8037,73 рубля только проценты.

Преимущества и недостатки сложной процентной ставки

У вкладов, на которые начисляются проценты с капитализацией, имеются свои достоинства и недостатки. Причём зависят они зачастую от условий, которые предоставляет банковская организация. Основным преимуществом подобного вклада является более высокая доходность при определённых условиях.

Из недостатков можно отметить следующее:

  1. Нельзя сразу же воспользоваться денежными средствами, полученными за начисление сложных процентов. В депозитах без капитализации проценты сразу же перечисляются на отдельный счёт и доступны для использования вкладчиком.
  2. Меньший размер процентной ставки. Некоторые банковские организации выставляют более низкие ставки по вкладам с капитализацией.
  3. Низкий уровень доходности при краткосрочных вложениях. Для получения значительной прибыли необходимо размещать денежные средства на срок от 3 лет.
  4. Низкая доходность при небольших вкладах.

Учитывая информацию, представленную в этой статье, можно сделать вывод, что депозиты с капитализацией не всегда выгодны. Открывать такой вклад целесообразно только в том случае, если срок депозита будет не меньше 3 лет. Причём при открытии такого депозита рекомендуется использовать крупные суммы денежных средств. В остальных случаях лучше открывать депозиты по другим программам, предлагаемым в различных банках.

Лучшие доходные карты 2021

Прибыль
Уралсиб
Дебетовая карта

  • до 8% на остаток
  • до 3% кэшбэка на всё
  • 0-99₽ за обслуживание

Подробнее

ПОРА
УБРиР
Дебетовая карта

  • до 6% на остаток
  • до 6% кэшбэка
  • 0-99₽ за обслуживание

Подробнее

Максимальный доход
Локо-Банк
Дебетовая карта

  • до 5,25% на остаток
  • до 1% кэшбэка на всё
  • 0-499₽ за обслуживание

Подробнее

Следите за новостями на нашем телеграм-каналеПерейти

Автор статьи: Редакция Mnogo-Kreditov.ru

Вспомогательные формулы

Привожу еще пару вспомогательных формул, которые могут пригодиться при составлении личного финансового плана. Они выражаются из уже написанных выше. Рассмотрим все на примерах задач.

Задача №1

Дано:

  • у вас есть 60 тыс. рублей
  • вы хотите приумножить их до 250 тыс. рублей
  • у вас есть срок 15 лет

Найти:

под какую процентную ставку нужно вложить деньги?

Расчет:

Ответ равен 10,03 процентам

Задача №2

Дано:

  • у вас есть 50 тыс. рублей
  • вы хотите приумножить их до 1 млн. рублей
  • вы уверены, что сможете вложить их под 40% годовых

Найти:

сколько потребуется для этого времени в годах?

Расчет:

Ответ: 8,9 лет.

Как это работает в реальной жизни: примеры из истории

Бенджамин Франклин, умерший в 1790 году, завещал городам Бостону и Филадельфии по 2000 долларов, с обязательством не тратить эти средства в течение 200 лет и держать их на банковском депозите. Мэрии городов направляли деньги на выдачу займов, не расходуя полученную прибыль (фактически, реинвестируя их в новые займы). В результате через 200 лет у городов было 5 млн. и 2 млн. долларов соответственно.

Другой пример из американской истории. В 17-м веке голландцы выкупили у туземных индейцев территорию Манхеттена за 1000 долларов (по сегодняшним ценам). Если бы индейцы внесли эти деньги на депозит под 10%, то сегодня они бы обладали суммой в 100 трл.долларов.

Как работает сложный процент?

Сложный процент подразумевает использование начальной суммы и дохода, полученного во время предыдущих периодов. Таким примером может являться вклад в банке, в условиях которого указана капитализация полученной прибыли. Сумма процентов по вкладу, начисленная за первый месяц, добавляется к основному счёту, и во второй год процентная ставка применяется уже к увеличенной сумме, что обеспечивает рост итоговой прибыли.

Формула сложного процента

Расчёт будущей прибыли при использовании сложного процента производится по формуле:

, где:

– сумма, которую вы получите в конце периода;

– сумма первоначальных инвестиций, т.е. то, что вы вкладываете;

– годовая ставка;

– количество периодов начисления ставки (ежемесячно, ежеквартально, ежегодно и т.д.);

– общий срок вклада в годах.

Пример сложных процентов

Как мы выяснили выше, при использовании сложных процентов, прибыль по вкладу постоянно увеличивается. Сейчас посмотрим на примере, как это происходит.

Предположим, что у нас открыт вклад на сумму в 1000$ на 1 год со ставкой 5%. В этом случае, доход в конце года будет: 1000$ + 1000$ * (5 / 100) = 1050$. То есть мы просто посчитали простой процент для вклада на один год. Затем мы решили, что хотим снова открыть вклад ещё на 1 год. Тогда мы возьмём полученные ранее 1050$ и снова добавим их на вклад под 5% годовых. Тогда получится: 1050$ + 1050$ * (5 / 100) = 1102.5$.

Как видите, в первый год мы получили 1050$, а на второй год 1102$. Это и есть пример работы сложного процента, т.е. когда результат первого года (те самые 1050$), мы использовали для процента второго года и тем самым получили 1102$.

Если бы во второй год мы использовали простой процент, то мы брали не результат прошлого года (1050$), а взяли снова 1000$. И получилось бы:

  • 1 год: 1050$
  • 2 год: 1050$
  • 3 год: 1050$
  • 4 год: 1050$
  • 5 год: 1050$

Спустя 5 лет, на вашем депозите будет 5250$. А вот как меняется ваш депозит, если используется сложный процент:

  • 1 год: 1050$
  • 2 год: 1102$
  • 3 год: 1157$
  • 4 год: 1215$
  • 5 год: 1276$

То есть, спустя 5 лет, на вашем депозите будет 5800$. Как вы видите, разница существенна и именно в этом магия сложного процента. Чем дольше вы вкладываете деньги, используя прибыль, накопленную за предыдущие года – тем выше будет доход в конце.

Разница между простым и сложным процентами

Основная разница между двумя типами процента в том, на что именно начисляется процент. Когда используется простой, то за основу вычислений всегда берётся первоначальная сумма

Неважно, делаете вы расчёт для первого года или третьего – сумма всегда одна. Для сложного же процента – основа вычислений, это результат предыдущих вычислений

То есть то, что вы рассчитывали для прошлого года, берётся за основу расчётов для текущего года. Кратко: простой процент – основа всегда одинакова, сложный процент – основа всегда разная.

Отличия между сложными и простыми процентами
Простой процент Сложный процент
Доход начисляется один раз – в конце срока Доход начисляется каждый год
При расчёте учитывается только начальная сумма При расчёте учитывается начальная сумма плюс доход каждого года
Прибыль каждый год будет одинаковая. Прибыль каждый год будет увеличиваться, то есть она всегда разная.

Сложные проценты и использование других калькуляторов для их расчёта

В Интернете предлагается ряд бесплатных приложений по расчёту дивидендов. Многие портативные калькуляторы также могут выполнять эти задачи.

Бесплатный калькулятор капитализации предлагается через финансовые сайты. Он прост в использовании, предлагает выбор смешанных частот от ежедневного до ежегодного. Включает в себя возможность выбора непрерывной компоновки, позволяет вводить фактические даты начала и окончания календаря. После ввода необходимых расчетных данных в результатах отображаются:

  • полученные суммы;
  • будущая стоимость;
  • годовой процентный доход (представляет собой показатель, включающий начисления процентов и ежедневные надбавки);

Различные финансовые сайты предлагают бесплатный онлайн-калькулятор сложных дивидендов. Это приложение довольно простое в использовании. Позволяет вводить ежемесячные дополнительные депозиты к основной сумме. Это полезно для расчета прибыли, когда вносятся дополнительные ежемесячные сбережения. Иногда рассчитывать сложные надбавки помогают финансовые специалисты, работники банков и других учреждений.

Частота составления

Интерес клиента может составлять любой график частоты, от ежедневного до ежегодного. Существуют стандартные схемы составления частот. Они обычно применяются к финансовым инструментам.

  1. Для депозитных сертификатов. Типичные графики составления частот – ежедневные, ежемесячные или полугодовые.
  2. Для счетов денежного рынка – также ежедневные.
  3. Для ипотечных ссуд, ссуд на акции, личных ссуд для бизнеса или счетов кредитных карт наиболее часто применяемый составной график составляется ежемесячно.

Также могут быть различия во временных рамках. Тогда начисленные проценты фактически зачисляются на существующий баланс. Надбавки по счету могут насчитываться ежедневно, но зачисляются только ежемесячно. Когда суммы фактически начисляются или добавляются к существующему балансу, они начинают в сумме давать дополнительные проценты на счет.

Некоторые банки также предлагают то, что называется непрерывно сложным процентом. Он делает добавления к основной сумме в любой момент. В практических целях это не накапливает намного больше, чем ежедневные начисляемые надбавки. Исключением является случай, когда клиент не хочет вкладывать деньги и снимать их в тот же день. Более частое начисление дивидендов выгодно инвестору или кредитору. Для заемщика выгодна обратная ситуация.

Совокупный среднегодовой темп роста

Среднегодовой темп роста широко используется для расчета доходов за периоды времени для:

  • акций;
  • паевых инвестиционных фондов;
  • инвестиционных портфелей;

Также он используется для определения нормы прибыли. Изучается, превысил ли управляющий взаимным фондом или портфельным управляющим рыночную норму прибыли за определенный период времени. Например, рыночный индекс обеспечил общую доходность в 10% за пятилетний период. Управляющий фондом генерировал только 9% годовой доходности за тот же период. В таком случае он уступил рынку.

Совокупный среднегодовой темп роста также может быть использован в других целях (для расчета ожидаемого темпа роста инвестиционных портфелей в течение длительных периодов времени). Это полезно для таких целей, как сбережения для выхода на пенсию.

Сложные проценты

Сложные проценты по вкладу

Отличие простых процентов от сложных на самом деле довольно большое. При выборе депозитного продукта наверняка каждому приходилось слышать о таком понятии, как капитализация. То есть это та схема начисления прибыли, при которой начисленная прибыль причисляется к телу депозита, а на него в будущем снова начисляется доход.

Отсюда можно сделать вывод, что капитализация позволяет получить большую прибыль по сравнению с простым процентом. Чтобы наглядно в этом убедиться рассмотрим формулу расчета сложных процентов, а выглядеть она будет следующим образом: B=(K×H×P/N)/100, где:

  • B – размер начисленной прибыли;
  • K – тело депозита;
  • H – годовая ставка;
  • P – количество дней, в течение которых происходит капитализация;
  • N – число дней в году.

Чтобы наглядно понять, как именно будет рассчитываться сложный процент. Рассмотрим простой пример. Сумма депозита 50000 рублей процентная ставка в год 7%, капитализация осуществляется ежемесячно, срок действия договора один год. Произведем расчет прибыли за первый месяц пользования депозитом: B=(50000×7×30/365)/100=287,6 рублей – это прибыль за первый месяц. В следующем периоде расчет будет выглядеть следующим образом: B=(50287,6×7×31/365)/100=298,9 рублей.

Из вышеприведенного примера можно сделать вывод, что капитализация позволяет получать с каждым месяцем большую прибыль по сравнению с предыдущим

Вот только при выборе депозитного предложения обязательно обратить внимание, с какой периодичностью осуществляется капитализация процентов, чем чаще, тем больше выгоды получает клиент

Что такое сложные проценты простыми словами

Сложные проценты – это довольно глубокий и вмещающий в одном значении широкий спектр понятий: это и добавление к общей сумме уже начисленных на банковский вклад процентов, и реинвестиции дивидендов владельцами акций для увеличения уставного капитала, и увеличение вложений предпринимателем или фирмой в свои новые проекты за счет ранее полученной прибыли от текущей деятельности.

Список определений можно продолжать еще очень долго, однако нас в первую очередь интересует область, связанная с инвестициями в ценные бумаги, валюты и другие биржевые активы, то есть все, что помогает людям приумножать капиталы удаленно.

В зависимости от объекта, на который они направлены, реинвестиции подразделяются на реальные и финансовые. Что стоит за первыми понятно уже из самого названия: вложение прибыли в создание и расширение таких реальных активов как производство, оборудование, недвижимость, технологии и т.д. Для интернет-трейдера с несколькими сотнями или пусть даже тысячами долларов это не представляет никакого интереса, а вот финансовые реинвестиции – совсем другое дело, поскольку именно под их определение попадает все, что связанно с повторными вложениями прибыли в фондовый рынок, ПАММ-инвестирование, торговлю на Форексе, бинарных опционах и др.

К примеру, если вложить в ПАММ счета $1000 под средние ежемесячные 6%, и не снимать полученную прибыль, а пускать ее в работу далее, то за 3 года вместо 216% можно получить более 800%:

Не нужно торопиться с выводом прибыли обнаружив выгодный проект для вложений, необходимо подождать и дать сложному проценту делать свою работу – увеличивать капитал. Например, уже упомянутый выше Уоррен Баффетт никогда не покупает акции менее чем на 10 лет, а уж он точно знает, что делает, в противном случае у него бы сейчас не было 70 миллиардов долларов.

Исследования показывают, что практически любой инвестор «средней руки», способен в результате ежемесячного реинвестирования прибыли, уже через полгода только за счет работы сложных процентов прирастить 5-15% к своему первоначальному капиталу.

Критики реинвестиций постоянно ссылаются на их рискованность (вдруг компания обанкротится, сайт закроется, или управляющий трейдер ошибется и потеряет капитал своих клиентов) и не рекомендуют «класть все яйца в одну корзину», а лучше перекинуть освободившиеся средства на другой не менее перспективный проект или просто вывести и потратить на себя.

Доля правды в словах критиков действительно есть – вокруг всегда существует изрядное количество недостаточно надежных людей и компаний, да и мировые рынки, порой, изрядно штормит, однако это еще не повод сразу же впадать в паранойю и забирать всю прибыль, как только она образовалась на счете.

Рекомендованные для вас статьи:

  • Как вкладывать в инвестиционные фонды в примерах
  • Как создать Пассивный доход оффлайн и в интернете
  • Цена акций Netflix сегодня (онлайн) – Пример покупки и Обзор
  • Куда вложить миллион рублей или долларов? 5 современных способов
  • Как инвестировать когда нет денег

Возможность подержать свою мизерную прибыль в руках (ведь у большинства мелких и средних трейдеров и вкладчиков она действительно очень небольшая) дорого обходится. Многие инвесторы годами топчутся на одном месте, искренне не понимая, почему даже вкладывая годами в успешный проект, они практически ни на грамм не становятся богаче, а вся прибыль сама собой постоянно куда-то улетучивается.

Как рассчитать через Excel?

Рассчитать в Excel доход от депозита можно на примере. Если необходимо положить на депозит 50 000 руб. с процентной ставкой 8% на три года с ежемесячной капитализацией и просчитать размер дохода через 36 месяцев, нужно составить таблицу, в которую внести 5 столбиков:

1 – сверху вниз указываются месяцы от 1 до 36;

2 — (В4) вписывается в строку сумма вклада – 50 000 руб.;

3 – (С4) указывается % — 8;

4 – (D4) вставляется формула для расчета ежемесячных %: =B4*$C$4/12, в которой В4 – сумма вклада, С4 -% (нужно проставлять значок $, чтобы формула выбирала данное поле, или путем выделения графы С4 курсором с нажатием клавиши F4 на клавиатуре), 12 – месяцы (% высчитывается в годовых);

5 – (Е4) считается новая сумма вклада, которая будет использована для начисления процента. Нужно написать формулу =B4+D4, в которой В4 – сумма вклада, D4 – сумма %, которые были начислены. Это будет новая сумма вклада, исходя из которой начисляются %.

В графу В5 заносится формула = Е4, в которой Е4 – это сумма вклада на истекший месяц с процентами.

Далее нужно скопировать формулы:

  • подвести курсор к углу ячейки В5, он изменится с белого плюса на черный;
  • потянуть его вниз, произойдет автоматическое копирование формулы из этой ячейки в другие;
  • эту же операцию нужно выполнить с формулами, вписанными в ячейки D4, E4.
  • В итоге, если все выполнено правильно, должен получиться ответ 63 512 руб.

Формулы расчета

Раз есть сложный, значит, есть и простой процент. Несправедливо, если мы не разберем младшего брата нашего героя.

Простой процент

Простой процент каждый расчетный период (месяц, квартал, год) начисляется только на первоначальную сумму. Никакого эффекта “снежного кома” он не дает. Сумма увеличивается медленно.

Формула расчета:

SN = SП * (1 + % ст * N), где

  • SN – сумма в конце периода N;
  • SП – первоначальная сумма капитала;
  • % ст – процентная ставка (доход);
  • N – расчетный период.

Формула справедлива, если речь идет о начислении дохода раз в год. Например, положили на счет 100 000 ₽ под 10 % годовых на 10 лет. В конце срока получите: 100 000 * (1 + 0,1 * 10) = 200 000 ₽.

Более 100 крутых уроков, тестов и тренажеров для развития мозга

Начать развиваться

В реальной жизни понятие простого % применяется, например, в экономических расчетах по банковским вкладам без учета капитализации. В договоре обязательно указывается годовая процентная ставка. Проценты начисляются за каждый день нахождения денег на вкладе. А получать доход вкладчик может ежемесячно, ежеквартально или раз в год.

В этом случае формула примет вид:

SN = SП * (1 + % ст * Д / 365), где

Д – количество полных дней нахождения денег на депозите.

Например:

  1. Положили на счет 100 000 ₽ под 10 % годовых на 91 день. В конце срока получите: 100 000 * (1 + 0,1 * 91 / 365) = 102 493,15 ₽.
  2. На 180 дней: 100 000 * (1 + 0,1 * 180 / 365) = 104 931,51 ₽.
  3. На 2 года (730 дней): 100 000 * (1 + 0,1 * 730 / 365) = 120 000 ₽.

Сложный процент с начислением дохода 1 раз в год

По методу сложных процентов при начислении дохода 1 раз в год будущая сумма определяется по формуле:

SN = SП * (1 + % ст)N

Пример. В банк положили 100 000 ₽ под 10 % годовых на 2 года. Будущая стоимость вклада составит: 100 000 * (1 + 0,1)2 = 121 000 ₽.

Сложный процент с начислением дохода чаще, чем 1 раз в год

Доход может начисляться ежемесячно, ежеквартально или 2 раза в год. Формула меняется:

SN = SN * (1 + % ст / К)N*К, где

К – частота начисления дохода (12, 4 или 2 раза в год).

Пример. В банк положили 100 000 ₽ под 10 % годовых на 2 года с ежемесячным начислением процентов. Будущая стоимость вклада составит: 100 000 * (1 + 0,1/12)24 = 122 039,1 ₽.

Как рассчитать сложные проценты

Финансовый результат рассчитывается путем умножения первоначальной основной суммы на единицу плюс годовая процентная ставка. Данная ставка повышенная до количества сложных периодов минус один. Общая начальная сумма кредита затем вычитается из полученной стоимости.

Сложные проценты в экономике и как их рассчитать

Формула для расчета сложных дивидендов:

Сложный дивиденд = Общая сумма основного долга и процентов в будущем (или будущей стоимости) за вычетом основной суммы в настоящее время (или текущей стоимости).

Выделяют две используемые формулы

  1. Капитализация дивидендов= – P.
  2. Капитализация дивидендов= P .

(Где P = Основная сумма, i = номинальная годовая процентная ставка в процентном выражении, а n = количество начисляемых периодов.)

Возьмем трехлетний кредит в размере 10 000 дол под 5% годовых. Какова будет сумма процентов? В этом случае получаем: 10 000 дол = 10 000 дол = 1 576,25 дол.

Рост сложных процентов

Используем приведенный выше пример. Сложный дивиденд также учитывает накопленный процент за предыдущие периоды. Сумма результата не является одинаковой для всех трех лет, как это было бы с простым процентом. Общая сумма, которая подлежит выплате в течение трехлетнего периода по этому кредиту, составляет 1 576,25 дол.

Сложные периоды

При расчете сложного дивиденда количество периодов начисления составляет существенную разницу. Основное правило состоит в следующем: чем больше число сложных периодов, тем больше сумма надбавок

Обратим внимание на ситуацию. Она демонстрирует разницу, которую может составить число начисляемых периодов для займа в 10 000 до с годовой процентной ставкой 10% в течение 10-летнего периода

Сложный дивиденд значительно повышает доходность инвестиций в долгосрочной перспективе. В это же время депозит в размере 100 000 дол получает 5% простых надбавок. Он будет приносить суммы в размере 50 000 дол в течение 10 лет, капитализация составит 5% на 10 000 дол (62 889,46 дол за тот же период).

Расчет процентов по вкладу: формула

Если вы оформляете вклад с простыми процентами (без капитализации), то их легко можно рассчитать по следующей формуле.

Формула расчета процентов по вкладу:

Sп = (Sв*%*Nд)/Nг

где:

  • Sп — сумма процентов по вкладу;
  • Sв — сумма вклада;
  • % — процентная ставка в виде десятичной дроби (например, при 15% годовых, %=0,15);
  • Nд — число дней начисления процентов;
  • Nг — число дней в году (365 или 366).

Для точного расчета процентов по вкладу нужно точно знать, сколько дней банк будет начислять вам проценты (это указывается в условиях договора). Например, дата зачисления средств может учитываться, а может не учитываться. Дата возврата средств, как правило, не учитывается.

Расчет процентов по вкладу с пополнением и/или снятием производится путем отдельного подсчета для каждого периода нахождения на депозите определенной суммы и суммирования этих результатов.

Рассмотрим, как работает формула расчета процентов по вкладу на примерах.

Расчётные формулы

Для каждого вида процентов существует своя формула, помогающая её определить. Прежде чем приступать к расчётам, следует разобраться в основных терминах, которые применяются в формулах:

  • Период начисления. Промежуток времени, к которому приурочена простая и сложная процентная ставка.
  • Капитализация. Суммирование начисленных процентов с основной суммой задолженности.
  • Наращение. Увеличение денежной суммы во времени, вызванное капитализацией.

Наращение и дисконтирование характеризуются соответствующими множителями. Первый рассчитывается как L = S (n) / S (0), второй как v = S (0) / S (n). S (0) соответствует первоначальной сумме кредита, S (n) равняется величине долга в конце срока n.

Чтобы узнать n (срок задолженности в долях от периода t), требуется разделить срок долга в днях (t) на фиксированный временной промежуток, к которому относится ставка (t*). Обычно t* равен 365 дней (иногда уменьшен до 360).

Зная необходимые параметры, можно высчитать процент (i), используя выражение i = (S (t*) — S (0)): S (0). В случае с прямыми процентами исходной базой для определения процентной ставки в течение всего срока долга на каждом периоде применения процента служит первоначальная сумма долга S (0).

На основе этих же данных можно определить значение учётной ставки по формуле d = (S (t*) — S (0)): S (t*). Учётной считается та ставка, которая используется Центробанком для предоставления заёмов коммерческим банком.

Если срок задолженности t состоит из k этапов, то чтобы при действующей схеме простых процентов узнать размер наращенного вклада по окончании срока, придётся применить выражение S (n) = S (0) * (1 + n1 * i1 + … + nk * ik).

Допустим, что в первом полугодии простой процент составляет 0,09 годовых, затем в следующем году он сокращается на 0,01, а в следующих двух полугодиях возрастает на 0,005 в каждом. Первональный взнос равен 800 у.е.

Получается, что S (0) = 800, n1 = 0,5, i1 = 0,09, n2 = 1, n3 = 0,5, n4 = 0,5. Высчитываем i2 = 0,09 — 0,01 = 0,08, i3 = 0,08 + 0,005 = 0,085, i4 = 0,085 + 0,005 = 0,09.

Подставляем полученные цифры в формулу и узнаём, что величина наращенного вклада в конце срока составит S (n) = 800 * (1 + 0,5 * 0,09 + 1 * 0,08 + 0,5 * 0,085 + 0,5 * 0,09) = 980,97.

Простые и сложные проценты – в чем разница?

В погоне за клиентом банки прибегают к разным хитростям. Например, два банка могут обещать своим вкладчикам по 7% годовых на их сбережения – но при ближайшем рассмотрении окажется, что вложив по 100 тысяч рублей в оба банка, в первом клиент заработает 7000 рублей за год, а во втором – 7230 рублей. Все дело в том, как именно начисляются проценты.

Банки предлагают три основных варианта:

  1. проценты выплачиваются в конце срока вклада;
  2. проценты выплачиваются каждый месяц/квартал/год на счет или на карту клиента;
  3. проценты начисляются каждый месяц/квартал/год, но не выплачиваются, а присоединяются к основной сумме вклада. И в следующем периоде проценты начисляются уже на бОльшую сумму.

Еще есть редкие варианты, когда банк выплачивает проценты вперед, но часто такая схема не применяется.

По сути, второй и третий варианты – это почти одно и то же, просто клиент как правило может выбирать, получать проценты сразу или зачислять их на счет вклада.

Третий вариант обычно называется вкладом с капитализацией процентов – в нем применяется формула сложных процентов, а в первом случае используются простые. Вообще сложные проценты – это обычная школьная математика, но из-за хитростей банков даже более-менее финансово грамотные клиенты могут допустить ошибку.

На первый взгляд, сложные проценты всегда выгоднее, чем простые – ведь так клиент получает проценты на проценты, что в целом увеличивает его доход. И в нашем примере это тоже видно: клиент, вложивший 100 тысяч рублей под 7% годовых с капитализацией, получит на 230 рублей за год больше, чем по схеме простых процентов. Увы, далеко не все и не всегда так просто, как кажется.

Сложный процент в инвестициях

На радость инвесторам сложный процент применим не только к банковским депозитам, которые не отличаются высокими процентными ставками. Он также активно используется в инвестировании. Рассмотрим особенности расчета сложного процента при использовании разных инвестиционных инструментов.

  • Облигации. Если вы предпочитаете инвестировать в старые добрые облигации, то это не мешает вам реинвестировать получаемый от них доход. Купонные выплаты по облигациям с фиксированной процентной ставкой выплачиваются раз в квартал, полугодие или год. Если сумма дохода позволяет, его можно реинвестировать, купив те же или похожие ценные бумаги. К следующему моменту выплаты доход уже немного увеличится, и если действовать по такой схеме, к окончанию срока бумаг можно получить приличный капитал.
  • Акции. Реинвестирование дохода в акции происходит по аналогичной схеме. Инвестор на полученные деньги приобретает такие же ценные бумаги, увеличивая сумму следующих дивидендов. Некоторые инвесторы предпочитают вкладывать основной капитал в акции надежных эмитентов с умеренной доходностью, а при реинвестировании приобретать более рискованные ценные бумаги с высоким уровнем доходности. Это позволяет им соблюсти баланс между защитой капитала и повышением прибыли от инструмента.

Как даже с 1 000 рублей в кармане создать пассивный доход к пенсии

Пенсионный возраст увеличили, накопительную пенсию заморозили, регулярно проводят пенсионную реформу и меняют условия. Все эти хаотичные телодвижения говорят только о том, что у руководства нет четкого плана действий и видения, как же должна начисляться пенсия в нашей стране.

Какой вывод простому гражданину нужно сделать из всего этого? Только один – накопить на пенсию самостоятельно. И поможет в этом сложный процент. На конкретных расчетах посмотрим, как даже с 1 000 ₽ в месяц создать пассивный доход. Но для начала замечательная сказка из книги Бодо Шефера “Мани, или Азбука денег”.

Жил-был когда-то крестьянин. Каждое утро он ходил в курятник, чтобы взять на завтрак яйцо, которое снесла его курица. Но однажды он нашел в гнезде не обычное яйцо, а золотое. Сначала он не мог в это поверить. Возможно, кто-то решил над ним зло подшутить. Но ювелир, которому он принес показать яйцо, подтвердил, что оно из чистого золота. Крестьянин выгодно продал яйцо и устроил большой праздник.

На следующее утро он пошел в курятник раньше, чем обычно. В гнезде опять лежало золотое яйцо. Так продолжалось несколько дней. Но крестьянин был жадным и хотел побыстрее разбогатеть. Он злился на свою курицу, потому что “глупая птица” не могла объяснить ему, как она умудряется нести золотые яйца. Ему казалось, что тогда он мог бы и сам нести золотые яйца. Тогда у него было бы каждый день по два яйца. И однажды крестьянин так сильно разозлился, что вбежал в курятник и зарезал свою курицу. Некому стало нести золотые яйца.

Мораль этой сказки такова: нельзя резать курицу, несущую золотые яйца. Но чтобы получать золотые яйца, надо сначала завести курочку. Этим вы и должны заняться как можно скорее. Время – друг инвестора и враг того, кто откладывает на потом создание личного капитала.

Пример 1. Необходимо рассчитать, сколько денег нужно накопить, чтобы жить на пассивный доход через какое-то количество лет. Допустим, мы хотим на пенсии ежемесячно получать 50 000 ₽. Учтем инфляцию 4 %.

Ставку доходности примем равной 10 %. Ее размер зависит от состава инвестпортфеля. Если решили копить в облигациях, то закладывать надо меньший %. Если составить сбалансированный портфель из разных инструментов (например, ETF, акции и облигации отдельных эмитентов, золото), то 10 % – очень консервативная оценка. На практике получается значительно больше.

Расчет без учета инфляции: 50 000 * 12 месяцев / 0,1 = 6 000 000 ₽. Для учета инфляции воспользуемся онлайн-калькулятором. Необходимо накопить уже 10 000 000 ₽.

Пример 2. Есть начальный капитал 50 000 ₽ с ежемесячным вложением равной суммы: 1 000 ₽, 5 000 ₽ и 10 000 ₽. Доходность – 10 %, примем ежегодное начисление %. Сколько накопим через 10, 20, 30 и 40 лет?

Сумма ежемесячных взносов Срок накопления
10 лет 20 лет 30 лет 40 лет
1 000 ₽ 320936,22 1023674,99 2846398,39 7574073,45
5 000 ₽ 1085932,6 3772874,97 10742111,47 28818516,12
10 000 ₽ 2042178,08 7209374,94 20611752,84 55374069,46

Какие выводы мы можем сделать из этих расчетов:

  1. Накопить на пассивный доход в 50 000 ₽ в месяц мы сможем, откладывая 5 000 ₽ в течение 30 лет. Если инвестируем по 10 000 ₽, то уже примерно через 23 года можно выходить на пенсию.
  2. С ежемесячными 1 000 ₽ нужно довольствоваться меньшей суммой пассивного дохода. Например, чтобы получать ежемесячно 35 000 ₽, надо накопить 7 000 000 ₽. Из таблицы видно, что только через 40 лет достигнем этого. А вот для ежемесячной прибавки к пенсии в 20 000 ₽ понадобится накопить 4 000 000 ₽ за 35 лет.

Поиграйте своими цифрами в любом финансовом калькуляторе сложных процентов. У кого-то начальная или ежемесячная сумма будет больше, кто-то рассмотрит меньший или больший срок и т. д.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector